Non-existence of Small-amplitude Doubly Periodic Waves for Dispersive Equations

نویسنده

  • DAVID M. AMBROSE
چکیده

We formulate the question of existence of spatially periodic, time-periodic solutions for evolution equations as a fixed point problem, for certain temporal periods. We prove that if a certain estimate applies for the Duhamel integral, then time-periodic solutions cannot be arbitrarily small. This provides a partial analogue in the spatially periodic case of scattering results for dispersive equations on the real line, as scattering implies the non-existence of small-amplitude traveling waves. Furthermore, it also complements small-divisor methods (e.g, the Craig-Wayne-Bourgain method) for proving the existence of small-amplitude time-periodic solutions (again, for frequencies in certain set). Non-existence d’onde de petites amplitudes doublement périodiques pour les équations dispersives Résumé: Nous exprimons le problème d’existence de solutions périodiques en temps et en espace d’opérateurs d’évolution sous forme de problèmes de points fixes, pour certaines périodes de temps. Nous prouvons que si une certaine estimation pour l’integrale de Duhamel existe, alors les solutions périodiques en temps ne peuvent etre arbitrairement petites. Cela donne des résultats analogues pour le cas de la diffusion d’ondes périodiques dans l’espace sur la droite réelle, puisque la diffusion implique la non-existence d’onde de petites amplitudes. De plus, nos résultats viennent compléter les méthodes des petits diviseurs (comme par exemple la méthode de Craig-Wayne-Bourgain) pour prouver l’existence de solutions périodiques en temps de petites amplitudes (pour des frequences dans un certain ensemble).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...

متن کامل

Time-Periodic Linearized Solutions of the Compressible Euler Equations and a Problem of Small Divisors

It has been unknown since the time of Euler whether or not time-periodic sound wave propagation is physically possible in the compressible Euler equations, due mainly to the ubiquitous formation of shock waves. The existence of such waves would confirm the possibility of dissipation free long distance signaling. Following our work in [27], we derive exact linearized solutions that exhibit the s...

متن کامل

On the Galerkin/Finite-Element Method for the Serre Equations

A highly accurate numerical scheme is presented for the Serre system of partial differential equations, which models the propagation of dispersive shallow water waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finiteelement method based on smooth periodic splines in space, and an explicit fourth-order Runge-Kutta method in time. Computations compared with e...

متن کامل

2 2 M ar 2 00 5 Modulational instability of two pairs of counter - propagating waves and energy exchange in two - component media

The dynamics of two pairs of counter-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using an asymptotic multiple-scales expansion we obtain a suite of evolution equations to describe energy exchange between the two components of the system. De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014